New standards released to ensure medical AI is safe and effective

  • 1 November 2023
New standards released to ensure medical AI is safe and effective
1049316146

Healthcare professionals can harness AI safely and effectively by following a new set of patient and industry-agreed standards.

An international initiative called STANDING Together has released new standards ensuring that medical AI systems are developed with appropriate health datasets. These recommendations are the result of a two-year research study involving over 350 people from 58 countries, including patients, researchers, healthcare professionals, industry experts, and regulators.

The STANDING Together recommendations ensure that the full diversity of people that AI systems will be used for, is represented in health datasets. This is imperative as AI systems are less likely to work well for people who aren’t properly represented in datasets – and may even be harmful. People who are in minority groups are particularly likely to be under-represented in datasets.

The recommendations provide guidance on collecting and reporting details such as age, sex, gender, race, ethnicity, and other important characteristics.

They also recommend that any limitations of the dataset should be transparently reported to ensure that developers creating AI systems can choose the best data for their purpose. Guidance is also given on how to identify those who may be harmed when medical AI systems are used, allowing this risk to be reduced.

STANDING Together is led by researchers at University Hospitals Birmingham NHS Foundation Trust, and the University of Birmingham. The research has been conducted with collaborators from over 30 institutions worldwide, including universities, the UK medicines regulator (the Medicines and Healthcare products Regulatory Agency, MHRA), patient groups and charities, and small and large health technology companies.

The work has been funded by The Health Foundation and the NHS AI Lab and supported by the National Institute for Health and Care Research (NIHR).

Lead researcher Dr Xiaoxuan Liu said: “AI models are underpinned by data, which captures a wealth of information. When dealing with health data, this information can unfortunately include existing health inequalities. These inequalities can come about in many ways, including underrepresentation of particular groups, or as a reflection of structural biases within wider society.

“It is vital that anyone using data to develop new innovations (including AI) are aware of any biases, and that they are accounted for. As we move towards an AI-enabled future, we can ensure these technologies don’t just work on average, but that they work for all.”

Dominic Cushnan, director of AI, imaging and deployment at NHS England and the NHS AI Lab and recent speaker at Digital Health AI and Data, said: “The lack of diversity and inclusivity in our current datasets are major challenges in our ability to ensure AI in health and care works for everyone.

“These standards are an important step towards transparent and common documentation of represented groups in our data, which can support the responsible and fair development and use of AI.”

The recommendations are available open access here to support the development of safe, effective and equitable AI tools for healthcare.

Subscribe to our newsletter

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Sign up

Related News

Recommendations published to tackle bias in medical AI tech

Recommendations published to tackle bias in medical AI tech

A set of recommendations has been published with the aim of reducing the risk of potential bias in AI for healthcare technologies.
MHRA selects five AI-powered medical devices for regulatory pilot

MHRA selects five AI-powered medical devices for regulatory pilot

The Medicines and Healthcare products Regulatory Agency (MHRA) has selected five medical technologies for its AI Airlock a pilot scheme.
Digital Health Coffee Time Briefing ☕

Digital Health Coffee Time Briefing ☕

Today's news roundup covers a pilots of Flow Neuroscience at Leicestershire Partnership and new AI technology at University Hospitals Tees.